Recombinase Amplification Method Applied to Meat and Halal Authentication: Trends and Potential Implications

Authors

  • Siti Nurul Bazilah Haji Mohaimin Ḥalalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Tutong, BRUNEI https://orcid.org/0009-0006-2266-6753
  • Moohamad Ropaning Sulong Ḥalalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Tutong, BRUNEI. https://orcid.org/0000-0002-2888-1765
  • Nur Thaqifah Salihah Haji Mohd Salleh Faculty of Agriculture, Universiti Islam Sultan Sharif Ali, Tutong, BRUNEI.

DOI:

https://doi.org/10.33102/jfatwa.vol30no3.681

Keywords:

RPA, Halal, Meat Adulteration, Food Authentication, Recominase-Aided

Abstract

The rapid evolution of technology and the food industry has raised concerns about the accurate labelling of Halal food and meat authentication. The Halal authentication system maintains a zero-tolerance policy regarding the halal status of food products from farm to fork. As a result, innovative technologies such as recombinase polymerase amplification are necessary to address the growing issues of food fraud and enhance the current species identification method. Recombinase amplification method is an isothermal amplification process that operates at 37-42°C without the need for specialized equipment or technicians. A systematic review was conducted to analyse research on the application of Recombinase Amplification method in meat and Halal authentication, covering literature published from 2018 to 2024. Relevant studies were identified through a comprehensive search of established databases in which 25 studies met the inclusion criteria, focusing specifically on meat and Halal authentication, while studies related to clinical diagnostics and microbiological testing were excluded. This paper aims to analyse the various detection technologies integrated with Recombinase Polymerase Amplification (RPA) and to provide a comprehensive review of the application of RPA in meat and Halal authentication. The review will summarise current trends and evaluate the potential future developments and implications of RPA-based methods for establishing a reliable and rapid on-site auditing system.

Downloads

Download data is not yet available.

References

Adam, A. (2021, January 4). How Malaysia’s “meat cartel” scandal unfolded: A Timeline. Malay Mail. https://www.malaymail.com/news/malaysia/2021/01/04/how-malaysias-meat-cartel-scandal-unfolded-a-timeline/1937007.

Cao, Y., & Song, X. (2023). Meat authenticity made easy: DNA extraction-free rapid onsite detection of duck and pork ingredients in beef and lamb using dual-recombinase-aided amplification and multiplex lateral flow strips. Journal of Agricultural and Food Chemistry, 71(40), 14782–14794. https://doi.org/10.1021/acs.jafc.3c03259

Cao, Y., Zheng, K., Jiang, J., Wu, J., Shi, F., Song, X., & Jiang, Y. (2018). A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR Green I. Food Chemistry, 266, 73–78. https://doi.org/10.1016/j.foodchem.2018.05.115

Chang, J., Wang, N., Zhan, J.-P., Zhang, S.-J., Zou, D.-Y., Li, F., Zhang, Y., Li, Y.-S., Hu, P., Lu, S.-Y., Liu, Z.-S., & Ren, H.-L. (2023). A recombinase polymerase amplification–SYBR green I assay for the rapid and visual detection of brucella. Folia Microbiologica, 69(4), 767–774. https://doi.org/10.1007/s12223-023-01115-2

Chen, X., Yu, H., Ji, Y., Wei, W., Peng, C., Wang, X., Xu, X., Sun, M., & Xu, J. (2022). Development and application of a visual duck meat detection strategy for molecular diagnosis of duck-derived components. Foods, 11(13), 1895. https://doi.org/10.3390/foods11131895

Ding, W., Fang, T., Liu, Y., Zhang, L., Wang, B., & Sun, W. (2023). Multi-throughput POCT technology based on RPA and CRISPR/CAS12A and its application in detection of adulterated meat. ACS Food Science & Technology, 3(3), 514–523. https://doi.org/10.1021/acsfoodscitech.2c00390

Euler, M., Wang, Y., Heidenreich, D., Patel, P., Strohmeier, O., Hakenberg, S., & Piepenburg, O. (2015). Recombinase polymerase amplification assay for rapid detection of the Orf virus. Virology Journal, 12, 206. https://doi.org/10.1186/s12985-015-0440-z

Feng, J., Lan, H., Pan, D., Xu, X., & Wu, Y. (2024). Development of a Duplex Recombinase Polymerase Amplification-Lateral Flow Strip Assay with 1 Min of DNA Extraction for Simultaneous Identification of Pork and Chicken Ingredients. https://doi.org/10.2139/ssrn.4729611

Feng, X., Liu, Y., Zhao, Y., Sun, Z., Xu, N., Zhao, C., & Xia, W. (2023). Recombinase polymerase amplification-based biosensors for rapid zoonoses screening. International Journal of Nanomedicine, Volume 18, 6311–6331. https://doi.org/10.2147/ijn.s434197

Fu, M., Zhang, Q., Zhou, X., & Liu, B. (2020). Recombinase polymerase amplification based multiplex lateral flow dipstick for fast identification of duck ingredient in adulterated beef. Animals, 10(10), 1765. https://doi.org/10.3390/ani10101765

Guardian News and Media. (2013, February 15). Horsemeat scandal: The Essential Guide. The Guardian. https://www.theguardian.com/uk/2013/feb/15/horsemeat-scandal-the-essential-guide

Hsu, Y.-H., Yang, W.-C., & Chan, K.-W. (2021). Bushmeat species identification: Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for identification of Formosan Reeves’ muntjac (Muntiacus reevesi micrurus). Animals, 11(2), 426. https://doi.org/10.3390/ani11020426

Ivanov, A. V., Popravko, D. S., Safenkova, I. V., Zvereva, E. A., Dzantiev, B. B., & Zherdev, A. V. (2021). Rapid full-cycle technique to control adulteration of meat products: Integration of accelerated sample preparation, recombinase polymerase amplification, and test-strip detection. Molecules, 26(22), 6804. https://doi.org/10.3390/molecules26226804

Janudin, A. A., Kurup, C. P., Chee, L. Y., Mohd-Naim, N. F., & Ahmed, M. U. (2023b). Amplification-based CRISPR/CAS12A biosensor targeting the cox1 gene for specific detection of porcine DNA. ACS Omega, 8(41), 38212–38219. https://doi.org/10.1021/acsomega.3c04473

Kissenkötter, J., Böhlken-Fascher, S., Forrest, M. S., Piepenburg, O., Czerny, C.-P., & Abd El Wahed, A. (2020). Recombinase polymerase amplification assays for the identification of pork and horsemeat. Food Chemistry, 322, 126759. https://doi.org/10.1016/j.foodchem.2020.126759

Kua, J. M., Azizi, M. M., Abdul Talib, M. A., & Lau, H. Y. (2022). Adoption of analytical technologies for verification of authenticity of Halal Foods – a review. Food Additives & Contaminants: Part A, 39(12), 1906–1932. https://doi.org/10.1080/19440049.2022.2134591

Kumar, D., Kumar, R. R., Rana, P., Mendiratta, S. K., Agarwal, R. K., Singh, P., Kumari, S., & Jawla, J. (2020). On point identification of species origin of food animals by recombinase polymerase amplification-lateral flow (RPA-LF) assay targeting mitochondrial gene sequences. Journal of Food Science and Technology, 58(4), 1286–1294. https://doi.org/10.1007/s13197-020-04637-6

Land, K. J., Boeras, D. I., Chen, X.-S., Ramsay, A. R., & Peeling, R. W. (2018). Reassured diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nature Microbiology, 4(1), 46–54. https://doi.org/10.1038/s41564-018-0295-3

Li, F., Xiao, J., Yang, H., Yao, Y., Li, J., Zheng, H., Guo, Q., Wang, X., Chen, Y., Guo, Y., Wang, Y., & Shen, C. (2022). Development of a rapid and efficient RPA-CRISPR/CAS12A assay for mycoplasma pneumoniae detection. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.858806

Li, J., Macdonald, J., & von Stetten, F. (2019a). Review: Recombinase polymerase amplification: Development, applications and future directions. ACS Omega, 4(26), 11363–11371. https://doi.org/10.1021/acsomega.0c00341

Li, J., Pollak, N. M., & Macdonald, J. (2019b). Multiplex detection of nucleic acids using recombinase polymerase amplification and a molecular colorimetric 7-segment display. ACS Omega, 4(7), 11388–11396. https://doi.org/10.1021/acsomega.9b01097

Li, T., Jalbani, Y. M., Zhang, G., Zhao, Z., Wang, Z., Zhao, Y., Zhao, X., & Chen, A. (2019). Rapid authentication of mutton products by recombinase polymerase amplification coupled with lateral flow dipsticks. Sensors and Actuators B: Chemical, 290, 242–248. https://doi.org/10.1016/j.snb.2019.03.018

Li, X., Zang, M., Li, D., Zhang, K., Zhang, Z., & Wang, S. (2023). Meat Food Fraud Risk in Chinese markets 2012–2021. Npj Science of Food, 7(1). https://doi.org/10.1038/s41538-023-00189-z

Lin, H., Zhao, S., Liu, Y., Shao, L., Ye, Y., Jiang, N., & Yang, K. (2022). Rapid visual detection of Plasmodium using recombinase-aided amplification with lateral flow dipstick assay. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.922146

Lin, L., Zheng, Y., Huang, H., Zhuang, F., Chen, H., Zha, G., Yang, P., Wang, Z., Kong, M., Wei, H., Zou, X., & Lin, M. (2021). A visual method to detect meat adulteration by recombinase polymerase amplification combined with lateral flow dipstick. Food Chemistry, 354, 129526. https://doi.org/10.1016/j.foodchem.2021.129526

Liu, H., Cao, T., Chen, H., Zhang, J., Li, W., Zhang, Y., & Liu, H. (2023a). Two-color lateral flow nucleic acid assay combined with double-tailed recombinase polymerase amplification for simultaneous detection of chicken and duck adulteration in Mutton. Journal of Food Composition and Analysis, 118, 105209. https://doi.org/10.1016/j.jfca.2023.105209

Liu, H., Cao, T., Wang, J., Yuan, Y., Li, H., He, K., Chen, H., & Wang, L. (2024). Accurate and simultaneous detection of pork and horse meat adulteration by double tailed recombinase polymerase amplification integrated with SERS based two-color lateral flow nucleic acid hybridization strip. Journal of Food Composition and Analysis, 134, 106562. https://doi.org/10.1016/j.jfca.2024.106562

Liu, Haibin, Cao, R., Xu, W., Ma, Y., Li, W., Zhang, Y., & Liu, H. (2022). A cost-effective method for the rapid detection of chicken adulteration in meat using recombinase polymerase amplification combined with nucleic acid hybridization lateral flow strip. Journal of Food Composition and Analysis, 111, 104602. https://doi.org/10.1016/j.jfca.2022.104602

Lobato, I. M., & O’Sullivan, C. K. (2018). Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends in Analytical Chemistry, 98, 19–35. https://doi.org/10.1016/j.trac.2017.10.015

Mao, L., Ying, J., Selekon, B., Gonofio, E., Wang, X., Nakoune, E., Wong, G., & Berthet, N. (2022). Development and characterization of recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of Monkeypox virus. Viruses, 14(10), 2112. https://doi.org/10.3390/v14102112

Sedykh, C., Golubev, A., Panova-Kuzova, M., & Son, B. (2022). Rapid full‑cycle technique to control adulteration of meat products: Integration of accelerated sample preparation, recombinase polymerase amplification, and test‑strip detection. Molecules, 26 (22), 6804. https://doi.org/10.3390/molecules26226804

Usman, I., Sana, S., Afzaal, M., Imran, A., Saeed, F., Ahmed, A., Shah, Y. A., Munir, M., Ateeq, H., Afzal, A., Azam, I., Ejaz, A., Nayik, G. A., & Khan, M. R. (2023). Advances and challenges in conventional and modern techniques for Halal Food Authentication: A Review. Food Science & Nutrition, 12(3), 1430–1443. https://doi.org/10.1002/fsn3.3870

Velasco, A., Ramilo-Fernández, G., Denis, F., Oliveira, L., Shum, P., Silva, H., & Sotelo, C. G. (2021). A new rapid method for the authentication of Common Octopus (octopus vulgaris) in seafood products using recombinase polymerase amplification (RPA) and Lateral Flow Assay (LFA). Foods, 10(8), 1825. https://doi.org/10.3390/foods10081825

Wang, W., Wang, C., Zhang, Z., Zhang, P., Zhai, X., Li, X., & Zhang, T. (2021). Recombinase-aided amplification–lateral flow dipstick assay—a specific and sensitive method for visual detection of avian infectious laryngotracheitis virus. Poultry Science, 100(3), 100895. https://doi.org/10.1016/j.psj.2020.12.008

Wang, X. F., Chen, W. Q., Guo, J. L., Peng, C., Chen, X. Y., Xu, X. L., Wei, W., Yang, L., Ca, J., & Xu, J. F. (2021). A fast, visual, and instrument-free platform involving rapid DNA extraction, chemical heating, and recombinase aided amplification for on-site Nucleic acid detection. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.764306

Wang, J., Xu, W., Zhang, Y., Yin, Y., & Li, H. (2022). A rapid lateral flow recombinase polymerase amplification assay for Burkholderia pseudomallei detection. Frontiers in Microbiology, 13, 822429. https://doi.org/10.3389/fmicb.2022.822429

Wang, X., Jin, W., Yang, Y., Ma, H., Liu, H., Lei, J., Wu, Y., & Zhang, L. (2023). CRISPR/CAS12A-mediated enzymatic recombinase amplification for rapid visual quantitative authentication of Halal Food. Analytica Chimica Acta, 1255, 341144. https://doi.org/10.1016/j.aca.2023.341144

Xiong, Y., Luo, Y., Li, H., Wu, W., Ruan, X., & Mu, X. (2020). Rapid visual detection of dengue virus by combining reverse transcription recombinase-aided amplification with lateral-flow dipstick assay. International Journal of Infectious Diseases, 95, 406–412. https://doi.org/10.1016/j.ijid.2020.03.075

Yusop, M. H., Bakar, M. F., Kamarudin, K. R., Mokhtar, N. F., Hossain, M. A., Johan, M. R., & Noor, N. Q. (2022). Rapid detection of porcine DNA in meatball using recombinase polymerase amplification couple with lateral flow immunoassay for halal authentication. Molecules, 27(23), 8122. https://doi.org/10.3390/molecules27238122

Zhang, R., Li, Q., Zhang, Y., Zheng, Y., & Zhang, X. (2022). Alkaline lysis–RPA combined with CRISPR/Cas12a assay for the ultrafast visual identification of pork in meat products. *Food Control, 132*, Article 108479. https://doi.org/10.1016/j.foodcont.2021.108479

Zhao, J., Xu, H., Xu, C., Yin, W., Luo, L., Liu, G., & Wang, Y. (2025, June 10). Smartphone-integrated RPA‑CRISPR‑Cas12a detection system with microneedle sampling for point-of-care diagnosis of potato late blight in early stage [Preprint]. arXiv. https://arxiv.org/abs/2506.15728

Zhao, G., Wang, J., Yao, C., Xie, P., Li, X., Xu, Z., Xian, Y., Lei, H., & Shen, X. (2022). Alkaline lysis-recombinase polymerase amplification combined with CRISPR/CAS12A assay for the ultrafast visual identification of pork in meat products. Food Chemistry, 383, 132318. https://doi.org/10.1016/j.foodchem.2022.132318

Zhou, C., Liu, L., Chen, J., Fu, Q., Chen, Z., Wang, J., Sun, X., Ai, L., Xu, X., & Wang, J. (2024). Rapid authentication of characteristic milk powders by recombinase polymerase amplification assays. Food Chemistry, 443, 138540. https://doi.org/10.1016/j.foodchem.2024.138540

Zhou, C., Liu, L., Xiang, J., Fu, Q., Wang, J., Wang, K., Sun, X., Ai, L., Xu, X., & Wang, J. (2023a). Identification of horse, donkey and pig ingredients by species-specific era-based methods to assess the authenticity of Meat Products. Food Bioscience, 53, 102827. https://doi.org/10.1016/j.fbio.2023.102827

Zhou, C., Wang, J., Xiang, J., Fu, Q., Sun, X., Liu, L., Ai, L., & Wang, J. (2023b). Rapid detection of duck ingredient in adulterated foods by isothermal recombinase polymerase amplification assays. Food Chemistry: Molecular Sciences, 6, 100162. https://doi.org/10.1016/j.fochms.2023.100162

Published

30-01-2026

How to Cite

Recombinase Amplification Method Applied to Meat and Halal Authentication: Trends and Potential Implications . (2026). Journal of Fatwa Management and Research, 31(1), 22-45. https://doi.org/10.33102/jfatwa.vol30no3.681

Similar Articles

61-70 of 91

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)